Skip to content

贝叶斯

graph TD x1((x1)) --> x3((x3)) x1 --> x4((x4))
%%{init: {'theme':'dark'}}%% graph TD x1((x1)) --> x3((x3)) x1 --> x4((x4))
P(x3,x4x1)=P(x1,x3,x4)P(x1)=P(x3x1)P(x4x1)P(x1)P(x1)\displaystyle{ \begin{aligned}P \left( x _{ 3 } , x _{ 4 } \mid x _{ 1 } \right) & = \frac{ P \left( x _{ 1 } , x _{ 3 } , x _{ 4 } \right) }{ P \left( x _{ 1 } \right) } \\ & = \frac{ P \left( x _{ 3 } \mid x _{ 1 } \right) P \left( x _{ 4 } \mid x _{ 1 } \right) P \left( x _{ 1 } \right) }{ P \left( x _{ 1 } \right) }\end{aligned} }
graph RL z((z)) --> x((x)) --> y((y))
%%{init: {'theme':'dark'}}%% graph RL z((z)) --> x((x)) --> y((y))
P(y,zx)=P(yx)P(xz)P(z)P(x)=P(yx)P(zx)P(x)P(x)\displaystyle{ \begin{aligned}P \left( y , z \mid x \right) & = \frac{ P \left( y \mid x \right) P \left( x \mid z \right) P \left( z \right) }{ P \left( x \right) } \\ & = \frac{ P \left( y \mid x \right) P \left( z \mid x \right) P \left( x \right) }{ P \left( x \right) }\end{aligned} }
graph TD x1((x1)) --> x4((x4)) x2((x2)) --> x4
%%{init: {'theme':'dark'}}%% graph TD x1((x1)) --> x4((x4)) x2((x2)) --> x4
P(x1,x2)=x4P(x1,x2,x4)=x4P(x4x1,x2)P(x1)P(x2)=P(x1)P(x2)\displaystyle{ \begin{aligned}P \left( x _{ 1 } , x _{ 2 } \right) & = \sum _{ x _{ 4 } } P \left( x _{ 1 } , x _{ 2 } , x _{ 4 } \right) \\ & = \sum _{ x _{ 4 } } P \left( x _{ 4 } \mid x _{ 1 } , x _{ 2 } \right) P \left( x _{ 1 } \right) P \left( x _{ 2 } \right) \\ & = P \left( x _{ 1 } \right) P \left( x _{ 2 } \right)\end{aligned} }