Skip to content

梯度 散度 旋度

转自知乎

1. 算子

向量算子

=grad=xex+yey+zez\displaystyle{ \nabla = \mathbf{ grad } = \frac{ \partial { } }{ \partial x } \vec{ e _{ x } } + \frac{ \partial { } }{ \partial y } \vec{ e _{ y } } + \frac{ \partial { } }{ \partial z } \vec{ e _{ z } } }

其中,ex,ey,ez\vec{e_x}, \vec{e_y}, \vec{e_z} 分别是 X,Y,Z\displaystyle{ X , Y , Z } 方向上的单位向量。使用向量方式书写有

=grad=[x,y,z]T\displaystyle{ \nabla = \mathbf{ grad } = \left[ \frac{ \partial { } }{ \partial x } , \frac{ \partial { } }{ \partial y } , \frac{ \partial { } }{ \partial z } \right] ^{ \text{T} } }

2. 梯度

首先说明,梯度是一个向量,它表示函数在某个点处往哪个方向走,变化最快,即梯度等于方向导数的最大值。对于一个标量函数 ψ\psi 中,定义它的梯度为

ψ=[x,y,z]Tφ=[ψx,ψy,ψz]T\displaystyle{ \begin{aligned}\nabla \psi & = \left[ \frac{ \partial { } }{ \partial x } , \frac{ \partial { } }{ \partial y } , \frac{ \partial { } }{ \partial z } \right] ^{ \text{T} } \varphi \\ & = \left[ \frac{ \partial \psi }{ \partial x } , \frac{ \partial \psi }{ \partial y } , \frac{ \partial \psi }{ \partial z } \right] ^{ \text{T} }\end{aligned} }

只有标量函数才有梯度

3. 散度

散度是一个标量,它表示一个闭合曲面内单位体积的通量。散度的作用对象是一个矢量函数,对于一个矢量函数 f=[fx,fy,fz]T\vec f=[f_x,f_y,f_z]^{\rm T},散度的定义为

f=Tf=[x,y,z][fxfyfz]=fxx+fyy+fzz\displaystyle{ \begin{aligned}\nabla \cdot f & = \nabla ^{ \text{T} } f = \left[ \frac{ \partial { } }{ \partial x } , \frac{ \partial { } }{ \partial y } , \frac{ \partial { } }{ \partial z } \right] \left[ \begin{array}{c} f _{ x } \\ f _{ y } \\ f _{ z } \end{array} \right] \\ & = \frac{ \partial f _{ x } }{ \partial x } + \frac{ \partial f _{ y } }{ \partial y } + \frac{ \partial f _{ z } }{ \partial z }\end{aligned} }

为了方便记忆,可以将散度类比于线性代数中的向量内积,两个向量的内积是一个标量,而散度的结果也是一个标量

4. 旋度

旋度是一个向量,它表示单位面积的环量,即环量面密度。旋度的作用对象是一个矢量函数,对于一个矢量函数 f=[fx,fy,fz]T\vec f=[f_x,f_y,f_z]^{\rm T},旋度的定义为

×f=exeyezxyzfxfyfz\displaystyle{ \nabla \times \vec{ f } = \left| \begin{array}{ccc} \vec{ e _{ x } } & \vec{ e _{ y } } & \vec{ e _{ z } } \\ \frac{ \partial { } }{ \partial x } & \frac{ \partial { } }{ \partial y } & \frac{ \partial { } }{ \partial z } \\ f _{ x } & f _{ y } & f _{ z } \end{array} \right| }

5. 对标量场的梯度求散度

(ψ)=T(ψ)=[x,y,z][ψxψyψz]=2ψx2+2ψy2+2ψz2\displaystyle{ \begin{aligned}\nabla \cdot \left( \nabla \psi \right) & = \nabla ^{ \text{T} } \left( \nabla \psi \right) \\ & = \left[ \frac{ \partial { } }{ \partial x } , \frac{ \partial { } }{ \partial y } , \frac{ \partial { } }{ \partial z } \right] \left[ \begin{array}{c} \frac{ \partial \psi }{ \partial x } \\ \frac{ \partial \psi }{ \partial y } \\ \frac{ \partial \psi }{ \partial z } \end{array} \right] \\ & = \frac{ \partial ^{ 2 } \psi }{ \partial x ^{ 2 } } + \frac{ \partial ^{ 2 } \psi }{ \partial y ^{ 2 } } + \frac{ \partial ^{ 2 } \psi }{ \partial z ^{ 2 } }\end{aligned} }

6. 对标量场的梯度求旋度

×ψ=exeyezxyzψxψyψz=ex(2ψyz2ψzy)ey(2ψxz2ψzx)+ez(2ψxy2ψyx)=0\begin{aligned} \nabla \times \nabla \psi & = \begin{vmatrix} \vec{e_x} & \vec{e_y} & \vec{e_z} \\ { \partial \over \partial x} & { \partial \over \partial y} & { \partial \over \partial z} \\ { \partial \psi \over \partial x} & { \partial \psi \over \partial y} & { \partial \psi \over \partial z} \end{vmatrix} \\ & = \vec{e_x} \left( {\partial^2 \psi \over \partial y \partial z } - {\partial^2 \psi \over \partial z \partial y }\right) - \vec{e_y} \left( {\partial^2 \psi \over \partial x \partial z } - {\partial^2 \psi \over \partial z \partial x }\right) + \vec{e_z} \left( {\partial^2 \psi \over \partial x \partial y } - {\partial^2 \psi \over \partial y \partial x }\right) \\ & = \mathbf{0} \end{aligned} ×ψ=exeyezxyzψxψyψz=ex(2ψyz2ψzy)ey(2ψxz2ψzx)+ez(2ψxy2ψyx)=0\begin{aligned}\displaystyle \nabla\times\nabla\psi&={\left|\begin{matrix}\vec{e_{x} }&\vec{e_{y} }&\vec{e_{z} }\\\frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\\frac{\partial\psi}{\partial x}&\frac{\partial\psi}{\partial y}&\frac{\partial\psi}{\partial z}\\\end{matrix}\right|} \\ \displaystyle &=\vec{e_{x} }{\left(\frac{\partial^{2}\psi}{\partial y\partial z}-\frac{\partial^{2}\psi}{\partial z\partial y}\right)}-\vec{e_{y} }{\left(\frac{\partial^{2}\psi}{\partial x\partial z}-\frac{\partial^{2}\psi}{\partial z\partial x}\right)}+\vec{e_{z} }{\left(\frac{\partial^{2}\psi}{\partial x\partial y}-\frac{\partial^{2}\psi}{\partial y\partial x}\right)} \\ \displaystyle &={\mathbf{0} }\end{aligned}

梯度的旋度恒为 0

7. 对旋度求散度

(×f)=T(×f)=[x,y,z][fzyfyzfxzfzxfyxfxy]=2fzyx2fyzx+2fxzy2fzxy+2fyxz2fxyz=0\begin{aligned} \nabla \cdot \left(\nabla \times \vec f \right) & = \nabla ^{\rm T} \left(\nabla \times \vec f \right) \\ & = \left[ { \partial \over \partial x},{ \partial \over \partial y}, { \partial \over \partial z} \right] \begin{bmatrix} {\partial f_z \over \partial y} - {\partial f_y \over \partial z} \\ {\partial f_x \over \partial z} - {\partial f_z \over \partial x} \\ {\partial f_y \over \partial x} - {\partial f_x \over \partial y} \end{bmatrix} \\ & = {\partial^2 f_z \over \partial y \partial x} - {\partial^2 f_y \over \partial z \partial x} + {\partial^2 f_x \over \partial z \partial y} - {\partial^2 f_z \over \partial x \partial y} + {\partial^2 f_y \over \partial x \partial z} - {\partial^2 f_x \over \partial y \partial z} \\ & = 0 \end{aligned}

旋度的散度恒为 0

梯无旋,旋无散。

8. 方向导数

定义

fl=limϕ0f(x+Δx,y+Δy,z+Δz)f(x,y,z)ρ\displaystyle{ \frac{ \partial f }{ \partial \boldsymbol{ l } } = \lim _{ \phi \to 0 } \frac{ f \left( x + \Delta x , y + \Delta y , z + \Delta z \right) - f \left( x , y , z \right) }{ \rho } }

其中,ρ=(Δx)2+(Δy)2+(Δz)2\rho = \sqrt{(\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2} }P(x+Δx,y+Δy,z+Δz)P'(x+ \Delta x, y + \Delta y, z + \Delta z)l\boldsymbol l 上的点

f(x,y,z)\displaystyle{ f \left( x , y , z \right) }P(x{0},y{0},z{0})\displaystyle{ P \left( x _{ \left\lbrace 0 \right\rbrace } , y _{ \left\lbrace 0 \right\rbrace } , z _{ \left\lbrace 0 \right\rbrace } \right) } 可微,与方向 l\vec l 同方向的单位向量 el={cosα,cosβ,cosγ}\vec{e_{l} } = \{\cos \alpha, \cos \beta, \cos \gamma\},则

fl=(fx,fy,fz)el=fxcosα+fycosβ+fzcosγ=fel=felcosθ=(fx)2+(fy)2+(fz)2cosθ(fx)2+(fy)2+(fz)2\displaystyle{ \begin{aligned}\frac{ \partial f }{ \partial \boldsymbol{ l } } & = \left( \frac{ \partial f }{ \partial x } , \frac{ \partial f }{ \partial y } , \frac{ \partial f }{ \partial z } \right) \cdot \vec{ e } _{ l } \\ & = f _{ x } ^{\prime} \cdot \cos \alpha + f _{ y } ^{\prime} \cdot \cos \beta + f _{ z } ^{\prime} \cdot \cos \gamma \\ & = \nabla f \cdot \vec{ e } _{ l } \\ & = \left| \nabla f \right| \cdot \left| \vec{ e } _{ l } \right| \cdot \cos \theta \\ & = \sqrt{ \left( \frac{ \partial f }{ \partial x } \right) ^{ 2 } + \left( \frac{ \partial f }{ \partial y } \right) ^{ 2 } + \left( \frac{ \partial f }{ \partial z } \right) ^{ 2 } } \cdot \cos \theta \\ & \leqslant \sqrt{ \left( \frac{ \partial f }{ \partial x } \right) ^{ 2 } + \left( \frac{ \partial f }{ \partial y } \right) ^{ 2 } + \left( \frac{ \partial f }{ \partial z } \right) ^{ 2 } }\end{aligned} }