Skip to content

傅里叶级数

1. 傅里叶系数与傅里叶级数

设函数 f(x)\displaystyle{ f \left( x \right) } 是周期为 2π2\pi 的周期函数,且在 [π,π][-\pi,\pi] 上可积,则称

an=1πππf(x)cosnxdxn=0,1,2,bn=1πππf(x)sinnxdxn=1,2,3,\begin{aligned} a_{n} & = {1 \over \pi} \int_{-\pi}^{\pi} f(x) \cos nx \mathrm{d} x & n=0,1,2,\cdots \\ b_{n} & = {1 \over \pi} \int_{-\pi}^{\pi} f(x) \sin nx \mathrm{d} x & n=1,2,3,\cdots \end{aligned}

f(x)\displaystyle{ f \left( x \right) } 的傅里叶系数;称

a02+n=1(ancosnx+bnsinnx){a_{0} \over 2} + \sum\limits_{n=1}^{\infty}(a_{n} \cos nx + b_{n} \sin nx)

f(x)\displaystyle{ f \left( x \right) }2π2\pi 为周期的形式傅里叶级数,记作

f(x)a02+n=1(ancosnx+bnsinnx)f(x) \sim {a_{0} \over 2} + \sum\limits_{n=1}^{\infty}(a_{n} \cos nx + b_{n} \sin nx)

如果函数 f(x)\displaystyle{ f \left( x \right) } 是周期为 T\displaystyle{ T } 的函数,在周期上可积,则

an=2TTf(x)cosn2πTxdxbn=2TTf(x)sinn2πTxdx\displaystyle{ \begin{aligned}a _{ n } & = \frac{ 2 }{ T } \int _{ T } f \left( x \right) \cos n { \frac{ 2 \pi }{ T } } x {\text{d}x} \\ b _{ n } & = \frac{ 2 }{ T } \int _{ T } f \left( x \right) \sin n { \frac{ 2 \pi }{ T } } x {\text{d}x}\end{aligned} }

f(x)\displaystyle{ f \left( x \right) } 的傅里叶系数;称

a02+n=1(ancosn2πTx+bnsinn2πTx)\displaystyle{ \frac{ a _{ 0 } }{ 2 } + \sum _{ n = 1 } ^{ \infty } \left( a _{ n } \cos n { \frac{ 2 \pi }{ T } } x + b _{ n } \sin n { \frac{ 2 \pi }{ T } } x \right) }

f(x)\displaystyle{ f \left( x \right) }T\displaystyle{ T } 为周期的形式傅里叶级数

2. 傅里叶级数的收敛性(狄利克雷收敛定理)

f(x)\displaystyle{ f \left( x \right) } 是周期为 2π2\pi 的可积函数,且满足

  1. f(x)\displaystyle{ f \left( x \right) }[π,π][-\pi,\pi] 上连续或只有有限个第一类间断点
  2. f(x)\displaystyle{ f \left( x \right) }[π,π][-\pi, \pi] 上只有有限个单调区间

f(x)\displaystyle{ f \left( x \right) } 的以 2π2\pi 为周期的傅里叶级数收敛,且

S(x)=a02+n=1(ancosnx+bnsinnx)=12(f(x+)+f(x))S(x) = {a_{0} \over 2} + \sum\limits_{n=1}^{\infty}(a_{n} \cos nx + b_{n} \sin nx) = {1 \over 2} \left(f(x^{+}) + f(x^-)\right)

3. 周期为 2π2\pi 的函数的展开

3.1. [π,π][-\pi, \pi] 上展开

an=1πππf(x)cosnxdxn=0,1,2,bn=1πππf(x)sinnxdxn=1,2,3,\begin{aligned} a_{n} & = {1 \over \pi} \int_{-\pi}^{\pi}f(x) \cos nx \mathrm{d} x & n=0,1,2,\cdots \\ b_{n} & = {1 \over \pi} \int_{-\pi}^{\pi}f(x) \sin nx \mathrm{d} x & n=1,2,3,\cdots \end{aligned}

3.2. [π,π][-\pi, \pi] 上奇偶函数的展开

f(x)\displaystyle{ f \left( x \right) } 为奇函数

an=0n=0,1,2,bn=2π0πf(x)sinnxdxn=1,2,3,\begin{aligned} a_{n}&=0 &n=0,1,2,\cdots \\ b_{n}&={2 \over \pi} \int_{0}^{\pi}f(x) \sin nx \mathrm{d} x &n=1,2,3,\cdots \end{aligned}

f(x)\displaystyle{ f \left( x \right) } 为偶函数

an=2π0πf(x)cosnxdxn=0,1,2,bn=0n=1,2,3,\begin{aligned} a_{n}&= {2 \over \pi} \int_{0}^{\pi}f(x) \cos nx \mathrm{d} x &n=0,1,2,\cdots \\ b_{n}&= 0 &n=1,2,3,\cdots \end{aligned}

[0,π][0,\pi] 上展为正弦或展为余弦

展为正弦
an=0n=0,1,2,bn=2π0πf(x)sinnxdxn=1,2,3,\begin{aligned} a_{n}&=0 &n=0,1,2,\cdots \\ b_{n}&={2 \over \pi} \int_{0}^{\pi}f(x) \sin nx \mathrm{d} x &n=1,2,3,\cdots \end{aligned}
展为余弦
an=2π0πf(x)cosnxdxn=0,1,2,bn=0n=1,2,3,\begin{aligned} a_{n}&= {2 \over \pi} \int_{0}^{\pi}f(x) \cos nx \mathrm{d} x &n=0,1,2,\cdots \\ b_{n}&= 0 &n=1,2,3,\cdots \end{aligned}

4. 周期为 2l\displaystyle{ 2 l } 的函数的展开

4.1. [l,l]\displaystyle{ \left[ - l , l \right] } 上展开

an=1lllf(x)cosnπxldxn=0,1,2,bn=1lllf(x)sinnπxldxn=0,1,2,\begin{aligned} a_{n}&= {1 \over l} \int_{-l}^{l}f(x)\cos {n \pi x \over l} \mathrm{d} x & n=0,1,2,\cdots \\ b_{n}&= {1 \over l} \int_{-l}^{l}f(x)\sin {n \pi x \over l} \mathrm{d} x & n=0,1,2,\cdots \end{aligned}

4.2. [l,l]\displaystyle{ \left[ - l , l \right] } 上奇偶函数的展开

f(x)\displaystyle{ f \left( x \right) } 为奇函数

an=0n=0,1,2,bn=2l0lf(x)sinnπxldxn=1,2,3,\begin{aligned} a_{n} &= 0 & n=0,1,2,\cdots \\ b_{n} &= {2 \over l} \int_{0}^{l} f(x) \sin {n \pi x \over l} \mathrm{d} x & n=1,2,3,\cdots \end{aligned}

f(x)\displaystyle{ f \left( x \right) } 为偶函数

an=2l0lf(x)cosnπxldxn=0,1,2,bn=0n=1,2,3,\begin{aligned} a_{n} &= {2 \over l} \int_{0}^{l} f(x) \cos {n \pi x \over l} \mathrm{d} x & n=0,1,2,\cdots \\ b_{n} &= 0 & n=1,2,3,\cdots \end{aligned}

4.3. 在 [0,l]\displaystyle{ \left[ 0 , l \right] } 上展为正弦或展为余弦

展为正弦

an=0n=0,1,2,bn=2l0lf(x)sinnπxldxn=1,2,3,\begin{aligned} a_{n} &= 0 & n=0,1,2,\cdots \\ b_{n} &= {2 \over l} \int_{0}^{l} f(x) \sin {n \pi x \over l} \mathrm{d} x & n=1,2,3,\cdots \end{aligned}

展为余弦

an=2l0lf(x)cosnπxldxn=0,1,2,bn=0n=1,2,3,\begin{aligned} a_{n} &= {2 \over l} \int_{0}^{l} f(x) \cos {n \pi x \over l} \mathrm{d} x & n=0,1,2,\cdots \\ b_{n} &= 0 & n=1,2,3,\cdots \end{aligned}