Skip to content

空间解析几何

距离公式

两点之间

A(x{1},y{1},z{1}),B(x{2},y{2},z{2})\displaystyle{ A \left( x _{ \left\lbrace 1 \right\rbrace } , y _{ \left\lbrace 1 \right\rbrace } , z _{ \left\lbrace 1 \right\rbrace } \right) , B \left( x _{ \left\lbrace 2 \right\rbrace } , y _{ \left\lbrace 2 \right\rbrace } , z _{ \left\lbrace 2 \right\rbrace } \right) } 两点之间的距离

d=(x1x2)2+(y1y2)2+(z1z2)2d = \sqrt{(x_{1}-x_{2})^{2} + (y_{1}-y_{2})^{2} + (z_{1}-z_{2})^{2} }

点到平面

平面 Σ:Ax+By+Cz+D=0\Sigma: Ax+By+Cz+D=0,点 M(x{0},y{0},z{0})\displaystyle{ M \left( x _{ \left\lbrace 0 \right\rbrace } , y _{ \left\lbrace 0 \right\rbrace } , z _{ \left\lbrace 0 \right\rbrace } \right) } 之间的距离

d=Ax0+By0+Cz0+DA2+B2+C2d = { |Ax_{0}+By_{0}+Cz_{0}+D| \over \sqrt{A^{2} + B^{2} + C^{2} } }

点到直线

直线 L:xx0m=yy0n=zz0pL: \displaystyle{x-x_{0} \over m} = {y - y_{0} \over n} = {z - z_{0} \over p},点 M1(x1,y1,z1)∉LM_{1}(x_{1},y_{1},z_{1}) \not \in L

M{0}(x{0},y{0},z{0})\displaystyle{ M _{ \left\lbrace 0 \right\rbrace } \left( x _{ \left\lbrace 0 \right\rbrace } , y _{ \left\lbrace 0 \right\rbrace } , z _{ \left\lbrace 0 \right\rbrace } \right) }s={m,n,p}\vec s=\{m, n, p\},则点 M{1}\displaystyle{ M _{ \left\lbrace 1 \right\rbrace } }L\displaystyle{ L } 的距离

d=M0M1×ssd = { \left|\overrightarrow{M_{0}M_{1} } \times \vec s \right| \over |\vec s| }

球极坐标

变量如何转换

{x=rsinφcosθy=rsinφsinθz=rcosφ\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \varphi \end{cases}
  • φ\varphi 为球上一点与原点连线和 z\displaystyle{ z } 轴正方向的夹角,φ[0,π]\varphi \in [0, \pi]
  • θ\theta 为球上一点所在的横截面上,半径与 x\displaystyle{ x } 轴正方向的旋转角,θ[0,2π]\theta \in [0, 2 \pi]
dV=r2sinφdrdθdφ\mathrm{d} V = r^{2} \sin \varphi \mathrm{d} r \mathrm{d} \theta \mathrm{d} \varphi

球极坐标积分

I=Ωf(x,y,z)dxdydz=02πdθ0πdφ0rf(x,y,z)r2sinφdr\begin{aligned} I & = \underset{\Omega} {\iiint} f(x,y,z) \mathrm {d} x \mathrm{d} y \mathrm{d} z \\ & = \int _{0}^{2\pi} \mathrm{d} \theta \int_{0}^{\pi} \mathrm{d} \varphi \int _{0}^{r} f(x,y,z) r^{2} \sin \varphi \mathrm{d} r \end{aligned}

单叶双曲面和双叶双曲面

单叶双曲面

x2a2+y2b2z2c2=1{x^{2} \over a^{2} } + {y^{2} \over b^{2} } - {z^{2} \over c^{2} } = 1

双叶双曲面

x2a2+y2b2z2c2=1{x^{2} \over a^{2} } + {y^{2} \over b^{2} } - {z^{2} \over c^{2} } = -1

旋转曲面表面积

参数方程形式

光滑参数曲线 C\displaystyle{ C } 由参数方程

{x=x(t)y=y(t)\displaystyle {\left\lbrace\begin{matrix*}[l] x= x{\left( t\right)}\\ y= y{\left( t\right)}\\\end{matrix*}\right.}

其中,t[α,β]\displaystyle t\in{\left[\alpha,\beta\right]},且 y(t)0\displaystyle y{\left( t\right)}\ge 0. 则曲线 C\displaystyle{ C }x\displaystyle{ x } 轴旋转所得的旋转曲面表面积为

S=2παβy(t)x2(t)+y2(t)dt\displaystyle S= 2\pi\int_{\alpha}^{\beta} y{\left( t\right)}\sqrt{ {\left. x^\prime\right.}^{2}{\left( t\right)}+{\left. y^\prime\right.}^{2}{\left( t\right)} }\text{d} t

直角坐标形式

{x=xy=y(x)\displaystyle {\left\lbrace\begin{matrix*}[l] x= x\\ y= y{\left( x\right)}\\\end{matrix*}\right.}

曲线 C\displaystyle{ C }x\displaystyle{ x } 轴旋转所得旋转曲面的表面积为

S=2παβy(x)dS=2παβy(x)1+y2(x)dx\displaystyle S= 2\pi\int_{\alpha}^{\beta} y{\left( x\right)}\text{d} S= 2\pi\int_{\alpha}^{\beta} y{\left( x\right)}\sqrt{1+{\left. y^\prime\right.}^{2}{\left( x\right)} }{\left.\text{d} x\right.}

y\displaystyle{ y } 轴旋转所得旋转曲面的表面积为

S=2παβx(y)dS=2παβx(y)1+x2(y)dx\displaystyle S= 2\pi\int_{\alpha}^{\beta} x{\left( y\right)}\text{d} S= 2\pi\int_{\alpha}^{\beta} x{\left( y\right)}\sqrt{1+{\left. x^\prime\right.}^{2}{\left( y\right)} }{\left.\text{d} x\right.}

极坐标形式

由于用极坐标表示有

{x=r(θ)cosθy=r(θ)sinθ\displaystyle {\left\lbrace\begin{matrix*}[l] x= r{\left(\theta\right)} \cos{\theta}\\ y= r{\left(\theta\right)} \sin{\theta}\\\end{matrix*}\right.}

求导有

{x=r(θ)cosθr(θ)sinθy=r(θ)sinθ+r(θ)cosθ\displaystyle {\left\lbrace\begin{matrix*}[l] x^\prime= r^\prime{\left(\theta\right)} \cos{\theta}- r{\left(\theta\right)} \sin{\theta}\\ y^\prime= r^\prime{\left(\theta\right)} \sin{\theta}+ r{\left(\theta\right)} \cos{\theta}\\\end{matrix*}\right.}

S=2πθ1θ2r(θ)sinθr2(θ)+r2(θ)dθ\displaystyle S= 2\pi\int_{\theta_{1} }^{\theta_{2} } r{\left(\theta\right)} \sin{\theta}\sqrt{r^{2}{\left(\theta\right)}+{\left. r^\prime\right.}^{2}{\left(\theta\right)} }\text{d}\theta

弧长公式

参数方程形式

光滑参数曲线 C\displaystyle{ C } 由参数方程

{x=x(t)y=y(t)\displaystyle {\left\lbrace\begin{matrix*}[l] x= x{\left( t\right)}\\ y= y{\left( t\right)}\\\end{matrix*}\right.}

其中 t[α,β]\displaystyle t\in{\left[\alpha,\beta\right]},其弧长为

s=αβx2(t)+y2(t)dt\displaystyle s=\int_{\alpha}^{\beta}\sqrt{ {\left. x^\prime\right.}^{2}{\left( t\right)}+{\left. y^\prime\right.}^{2}{\left( t\right)} }\text{d} t

直角坐标形式

{x=xy=y(x)\displaystyle {\left\lbrace\begin{matrix*}[l] x= x\\ y= y{\left( x\right)}\\\end{matrix*}\right.} s=αβ1+y2(t)dx\displaystyle s=\int_{\alpha}^{\beta}\sqrt{1+{\left. y^\prime\right.}^{2}{\left( t\right)} }{\left.\text{d} x\right.}

极坐标形式

由于用极坐标表示有

{x=r(θ)cosθy=r(θ)sinθ\displaystyle {\left\lbrace\begin{matrix*}[l] x= r{\left(\theta\right)} \cos{\theta}\\ y= r{\left(\theta\right)} \sin{\theta}\\\end{matrix*}\right.}

求导有

{x=r(θ)cosθr(θ)sinθy=r(θ)sinθ+r(θ)cosθ\displaystyle {\left\lbrace\begin{matrix*}[l] x^\prime= r^\prime{\left(\theta\right)} \cos{\theta}- r{\left(\theta\right)} \sin{\theta}\\ y^\prime= r^\prime{\left(\theta\right)} \sin{\theta}+ r{\left(\theta\right)} \cos{\theta}\\\end{matrix*}\right.}

s=θ1θ2r2(θ)+r2(θ)dθ\displaystyle s=\int_{\theta_{1} }^{\theta_{2} }\sqrt{r^{2}{\left(\theta\right)}+{\left. r^\prime\right.}^{2}{\left(\theta\right)} }\text{d}\theta