Skip to content

泰勒公式

泰勒公式

f(x)=f(x0)+f(x0)(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)n+Rn(x)f(x) = f(x_{0}) + f'(x_{0})(x-x_{0}) + {f''(x_{0}) \over 2!}(x-x_{0})^{2} + \cdots + {f^{(n)}(x_{0}) \over n!} (x-x_{0})^{n} + R_{n}(x)

余项(即误差)

Rn=f(n+1)(ξ)(n+1)!(xx0)n+1R_{n} = {f^{(n+1)}(\xi) \over (n+1)!}(x-x_{0})^{n+1}

ξ\xi 介于 x0\displaystyle{ x _{ 0 } }x\displaystyle{ x } 之间。

麦克劳林公式

是泰勒公式的一种特殊情况,即 x{0}=0\displaystyle{ x _{ \left\lbrace 0 \right\rbrace } = 0 }

f(x)=f(0)+f(0)x+f(0)2!x2++f(n)(0)n!xn+Rn(x)f(x) = f(0) + f'(0)x + {f''(0) \over 2!}x^{2} + \cdots + {f^{(n)}(0) \over n!} x^{n} + R_{n}(x)

误差 R{n}(x)\displaystyle{ \left| R _{ \left\lbrace n \right\rbrace } \left( x \right) \right| } 是当 x0x \to 0 时比 xn\displaystyle{ x ^{ n } } 高阶的无穷小。

皮亚诺余项

R{n}(x)=o(x{n})\displaystyle{ R _{ \left\lbrace n \right\rbrace } \left( x \right) = o \left( x ^{ \left\lbrace n \right\rbrace } \right) }

拉格朗日余项

Rn=f(n+1)(θx)(n+1)!xn+1R_{n} = {f^{(n+1)}(\theta x) \over (n+1)!} x^{n+1}

f{(n+1)}\displaystyle{ f ^{ \left\lbrace \left( n + 1 \right) \right\rbrace } }f\displaystyle{ f }n+1\displaystyle{ n + 1 } 阶导数,θ(0,1)\theta \in (0,1)

常见初等函数带皮亚诺余项的麦克劳林公式

ex=1+x+12!x2+13!x3++1n!xn+o(xn)cosx=112!x2+14!x4+(1)n(2n)!x2n+o(x2n)sinx=x13!x3+15!x5+(1)n1(2n1)!x2n1+o(x2n1)ln(1+x)=x12x2+13x3+(1)n1nxn+o(xn)(1+x)α=1+αx+α(α1)2!x2++α(α1)(αn+1)n!xn+o(xn)tanx=x+13x3+215x5+,x(π2,π2)\begin{aligned} e^{x} & = 1 + x + {1 \over 2!} x^{2} + {1 \over 3!} x^{3} + \cdots + {1 \over n!} x^{n} + o(x^{n}) \\ \cos x & = 1 - {1 \over 2!} x^{2} + {1 \over 4!} x^{4} - \cdots + {(-1)^{n} \over (2n)!}x^{2n} + o(x^{2n}) \\ \sin x & = x - {1 \over 3!} x^{3} + {1 \over 5!} x^{5} - \cdots + {(-1)^{n-1} \over (2n-1)!}x^{2n-1} + o(x^{2n-1}) \\ \ln(1+x) & = x - {1\over 2} x^{2} + {1 \over 3} x^{3} - \cdots + {(-1)^{n-1} \over n} x^{n} + o(x^{n}) \\ (1+x)^{\alpha} & = 1 + \alpha x + {\alpha (\alpha - 1) \over 2!} x^{2} + \cdots + {\alpha (\alpha - 1) \cdots (\alpha -n + 1) \over n!} x^{n} + o(x^{n}) \\ \tan x & = x + {1 \over 3} x^{3} + {2 \over 15} x^{5}+ \cdots, x \in \left( -{\pi \over 2}, {\pi \over 2} \right) \end{aligned}

中值定理

罗尔定理

f(x)\displaystyle{ f \left( x \right) }[a,b]\displaystyle{ \left[ a , b \right] } 连续,在 (a,b)\displaystyle{ \left( a , b \right) } 可导,f(a)=f(b)\displaystyle{ f \left( a \right) = f \left( b \right) },则 ξ(a,b)\exists \xi \in (a,b),使得 f(ξ)=0f'(\xi) = 0

拉格朗日中值定理

f(x)\displaystyle{ f \left( x \right) }[a,b]\displaystyle{ \left[ a , b \right] } 连续,在 (a,b)\displaystyle{ \left( a , b \right) } 可导,则 ξ(a,b)\exists \xi \in (a,b),使得

f(b)f(a)ba=f(ξ){f(b) - f(a) \over b - a} = f'(\xi)

也可写作

f(b)f(a)=f(ξ)(ba)f(b)-f(a) = f'(\xi) (b-a)

柯西中值定理

f(x),g(x)\displaystyle{ f \left( x \right) , g \left( x \right) }[a,b]\displaystyle{ \left[ a , b \right] } 连续,在 (a,b)\displaystyle{ \left( a , b \right) } 可导,对任意 x(a,b)x \in (a,b)g(x)0g(x) \ne 0,则至少存在一点 ξ(a,b)\xi \in (a,b),使得

f(b)f(a)g(b)g(a)=f(ξ)g(ξ){f(b) - f(a) \over g(b) - g(a)} = {f'(\xi) \over g'(\xi)}

积分中值定理

f(x)\displaystyle{ f \left( x \right) }[a,b]\displaystyle{ \left[ a , b \right] } 上连续,则至少存在一点 ξ[a,b]\xi \in [a,b],使得

abf(x)dx=f(ξ)(ba)\int _a^b f(x) \mathrm{d} x = f(\xi) (b-a)